(Where we drop any minus signs from the risk difference). NNT describes the number of patients you would need to treat with the experimental treatment rather than the control treatment in order to prevent a single event. In other words, if the risk difference is 0.76, that means if we treat 100 people, 76 more will benefit when we use the intervention, who would not have benefited if given control. So how many would we need to treat to help one person? 100/76 or 1.3.
We always round up NNT to the next whole number so in this case we need to treat two women with antibiotics to cure one additional woman (over and above those who would have been cured anyway, i.e. those cured in the control group). It is important with NNT to link it to a time frame, so in this case we would need to treat 2 women with antibiotics for 6 weeks to prevent a single extra woman from not being cured.
Where the risk difference is greater than 0 (i.e. the risk of the event we are trying to prevent actually increases) the same calculation produces a number known as the NNH  number need to harm. This is the number of participants treated for a length of time for one extra person to have the event.
While NNTs are easy to interpret, making them popular with consumers and clinicians, they cannot be used for performing a metaanalysis because of their mathematical properties. RR, OR and RD are therefore used for metaanalysis, and all may later be converted to NNTs as a way of communicating results in some Cochrane reviews. In later modules, we'll look in more depth at interpreting and applying the results of analyses.
Summary to date
Here is a reminder of the statistics we have covered so far in this module:
 The risk describes the number of participants having the event in a group divided by the total number of participants
 The odds describe the number of participants having the event divided by the number of participants not having the event
 The risk ratio (relative risk) describes the risk of the event in the intervention group divided by the risk of the event in the control group
 The odds ratio describes the odds of the event in the intervention group divided by the odds of the event in the control group
 The risk difference describes the absolute change in risk that is attributable to the experimental intervention
 The number needed to treat (NNT) gives the number of people you would have to treat with the experimental intervention (compared with the control) to prevent one event.
